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Abstract

Transportation research heavily relies on traffic simulations
for their ability to test hypotheses, crucial for informing trans-
portation policies. However, existing simulations often lack
realism, limiting their applicability to the real world. In con-
trast, data-driven studies leverage actual traffic data for tasks
like predictive modeling, but they typically focus only on a
specific real-world dataset. Our proposed approach combines
the strengths of both simulation and data-driven methods by
introducing a generative vehicle trajectory model. Initially
trained on simulated data using real roadmap information
OpenStreetMap, our model is then aligned with real-world
observations. Experiments on city-wide road networks with
large-scale trajectory data demonstrate the effectiveness of
our proposed method.

Introduction
Transportation research has extensively relied on traffic sim-
ulations because they allow us to test various hypotheses,
which is essential for transportation policymakers. How-
ever, a well-known drawback of existing traffic simulators
is their lack of realism, which limits the applicability of re-
search findings from simulations to the real world. A notable
example is the extensive research on reinforcement learn-
ing for traffic signal control in recent years (Genders and
Razavi 2016; Wei et al. 2018; Chen et al. 2020). Researchers
have found that the real bottleneck is the simulator’s devia-
tion from real-world conditions, making it difficult to apply
the learned decision models effectively in real-world scenar-
ios (Wei et al. 2021).

On the other hand, there is substantial research in the AI
field that focuses on real traffic data. In particular, studies
have explored generating trajectories by learning from ac-
tual vehicle movements in urban settings, e.g., the use of
generative adversarial networks (GANs) (Jiang et al. 2023)
and diffusion methods (Zhu et al. 2024a) to generate realistic
trajectories. However, a key limitation of these approaches is
that we can only learn from the observed data. In reality, it is
impossible to capture all the trajectories within a city’s road
network. Instead, we can only observe a very small subset of
all possible trajectories. Learning exclusively from observed
trajectories can lead to out-of-distribution (OOD) problems
when attempting to apply these models to an entire city’s
road network.

This paper adopts a novel approach to address the chal-
lenges inherent in the two research directions mentioned
above. We propose to develop a pre-trained generative
model using the vast amounts of data generated by the sim-
ulator and then further align this model with real-world ob-
servations. Compared to the simulator, our generative model
offers greater realism. Additionally, unlike models that rely
solely on real-world data, our approach can generalize more
effectively to the entire city-wide road network.

We would like to emphasize that this pre-training step can
be universally applied to any city, as the only requirement
is the access to a simulator that runs on the city’s road net-
work. In our experiment, we use SUMO (Lopez et al. 2018),
a widely-adopted microscopic traffic simulator that is freely
available for public use. SUMO seamlessly integrates with
OpenStreetMap (OSM), the most comprehensive road net-
work data source globally. This means we can pre-train a tra-
jectory generative model for any city, which can then serve
as a foundational model to be further aligned with real-world
observations.

Our proposed model is an auto-regressive generative
model built on the decoder-only Transformer architec-
ture (Vaswani et al. 2017), which is particularly well-suited
for trajectory data. A trajectory on the road network is es-
sentially a sequence of road network edges that a vehicle
traverses. To optimize the configuration of our generative
model, we utilize a recently released real city-scale vehicle
trajectory dataset obtained from traffic camera videos (Yu
et al. 2023). This dataset, derived from two cities in China
- Jinan and Shenzhen - encompasses road networks contain-
ing more than 20,000 road edges.

The experimental results highlight the effectiveness of
combining simulated and real-world data. Although simula-
tors can be calibrated using real data, the back-propagation
learning mechanism in our model enables more efficient and
effective alignment with real-world data compared to the
brute-force search methods typically used in calibration (Yu
and Fan 2017). Additionally, we demonstrate that even when
observations are masked in certain regions of the city, gen-
erative models based purely on real data tend to produce tra-
jectories that deviate significantly from the actual distribu-
tion, whereas our model can still generate realistic trajecto-
ries for these masked regions.



Related Work
Simulation and Calibration
Effectively generating traffic in city road network has been
investigated for decades in transportation field. Researchers
mainly follow two categories of methods to generate traf-
fic. One way is based on a pipeline of classic traffic models,
including traffic demands models (Flötteröd, Bierlaire, and
Nagel 2011) to estimate origin and destination distribution,
routing models (Ben Ticha et al. 2018), and dynamic traffic
assignment models (Peeta and Ziliaskopoulos 2001; Wang
et al. 2018) to infer how vehicles choose routes and traffic
macroscopic fundamental diagrams (Daganzo and Geroli-
minis 2008) to infer vehicle speed and volume in regions
and roads. Based on these traffic models, recent studies have
started to build comprehensive traffic simulation tools like
SUMO (Lopez et al. 2018) and AIMSIM (Barceló and Casas
2005). These simulations either describe how each vehicle
proceeds and interacts with the environment or describe how
the traffic status (e.g., volume, speed) of each road or re-
gion evolves when traffic enters the system. In order to make
the generated results closer to the real world, researchers
use real data to calibrate the traffic model or simulation via
methods like Tabu search (Osorio and Punzo 2019).

However, these physical models and simulations may still
deviate far from the real world traffic since their ideal as-
sumptions may not hold or their parameters are not correct
in the real world. Hence, in this paper, we propose a traffic
generation model pre-trained with simulation data and fur-
ther improved with real data.

Traffic Generative Models
In recent years, studies have started using data-driven meth-
ods to generate traffic for cities when given traffic demands
data (i.e., origin-destination data). From an objective per-
spective, studies mainly focus on learning vehicle trajecto-
ries (usually represented as GPS points) (Zhu et al. 2024b)
and learning road indicators (e.g., volume, speed) (Zhang
et al. 2020, 2019). In terms of methodologies, researchers
have used various methods to achieve traffic generation.
Studies use generative adversarial networks (Zhang et al.
2020), imitation learning or reinforcement learning meth-
ods (Zheng et al. 2021) as the learning paradigm to gener-
ate trajectories or road indicators. Various neural network
structures, e.g., RNN (Yu et al. 2017), GNN and Trans-
former (Haydari et al. 2024; Zhu et al. 2024b,a; Wang et al.
2024), are used to capture the temporal and spatial relation
among trajectories.

Current studies majorly suffer from the following three is-
sues. First, most studies primarily address traffic generation
at a regional level or through point-wise trajectories, ignor-
ing road network constraints. As a result, vehicles can gen-
erate unrealistic trajectories out of the road. Second, current
GAN-based methods are generating the “routes” rather than
“trajectories with timestamps”. Hence, they fail to model
how long it takes for a vehicle to pass a road and finish
the trip. Third, current diffusion models based on GPS loca-
tions may mistakenly generate nonconsecutive trajectories.
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Figure 1: Discretizing an example continuous vehicle trajec-
tory into a sequence of edges.

Adding noise to GPS trajectories may move the vehicle from
the northbound side of a road to the southbound.

Urban Foundation Model
Urban foundation models have become popular in recent
two years since the coming of GPT (Achiam et al. 2023).
Studies have emerged to work on very different problems.
Some representative ones are described here, including but
not limited to (1) representing urban regions or points us-
ing OpenStreetMap or satellite images (Balsebre et al. 2023;
Yan et al. 2024); (2) making various spatial temporal pre-
dictions using one single model (Li et al. 2024); (3) utiliz-
ing the capability of LLM to assist traffic simulation pro-
cess (Zhang et al. 2024). Though named urban foundation
models, these studies are fairly distinct from our study since
we are working on a different problem of city-scale traffic
generation, which can benefit various downstream city-scale
traffic tasks, e.g., prediction and policy control tasks.

Problem Definition
Suppose the road network is represented as G = (V,E),
where V is the set of vertices (intersections) and E is the set
of edges (road segments).

The movement of vehicles in cities can be described by
their trajectories, i.e., a sequence of GPS points. Due to the
fact that vehicles must run on road edges, the GPS trajectory
of a vehicle can be mapped into the road network graph
and converted to a road edge trajectory on the graph. Then,
a trajectory is represented as s = (e0, e1, ..., ei, ..., eT ),
where ei ∈ E denotes the road edge that the vehicle
is running on at the i-th timestep, and T is the total
number of time steps of this trajectory. Further, o = e0
and d = eT can represent the origin and destination
of this trajectory, respectively. Thus, a set of trajecto-
ries is represented as S = {s(1), s(2), ..., s(j), ..., s(N)}
and their corresponding origin destination pairs OD =
{(o(1), d(1)), (o(2), d(2)), ..., (o(j), d(j)), ..., (o(N), d(N))}.
Figure 1 provides an example of the trajectory of a vehicle.

Road Edge Trajectory Learning Problem Given a road
network graph G(V,E), and a set of origin destination pairs
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Figure 2: Illustration of our proposed method.

OD, the objective is to learn a mapping function qθ(s|o, d)
that generates a corresponding set of road edge trajectories
S, so that the following probability of generating the real
vehicle trajectories are maximized:

N∏
j=1

p(s(j)|o(j), d(j)). (1)

Here, the probability of generating each vehicle trajectory is
represented as

p(s(j)|o(j), d(j)) =
T∏

t=1

p(et|e0, · · · , et−1, d). (2)

This problem is significantly different from the previous
studies of GPS trajectory learning for the following rea-
sons. (1) The road edge trajectory representation naturally
takes the road network connectivity into consideration, so it
avoids generating unrealistic trajectories that deviate from
road constraints in the real world. (2) This formulation en-
ables the trajectory generator to learn more generalized tra-
jectory patterns according to the real road conditions. It es-
sentially allows the generator to learn how vehicles choose
their routes and adjust their speeds on the roads.

Method
Our method designs a simulation-real combined training
pipeline to achieve the following goals. (1) Mitigate the gap
between generated data and real data. (2) Make sure the gen-
erated data maintain essential physical constraints of real-
world trajectories (e.g., continuous in road edges, reasonable
proceeding speed).

Thus, we design our method as shown in Figure 2. We
propose a pipeline that our model learns the basic physi-
cal constraints from simulation data through the pre-training
process, and the following fine-tuning process with real data
aligns the pre-trained base model with real world driving
behaviors. This combined use of real and simulated data
helps address the challenges of limited data and out-of-
distribution scenarios in real-world datasets. For the neu-
ral representation and learning of trajectories, we design an
auto-regressive transformer-based model architecture.

Pre-Training using Simulated Data
Simulated Data Generation The aim of pre-training is
to explore different OD distributions as many as possible.

Hence, a domain randomization mechanism is used to first
enumerate possible OD pairs from the real data, and then
employ a famous microscopic traffic simulator SUMO to
generate their corresponding trajectories. It is expected that
simulated data will teach the pre-trained base model to grasp
basic physical properties when generating trajectories, e.g.,
the model can select consecutive road edges in the road net-
work and choose a relatively short path.

Pre-training stage We use the previously generated tra-
jectory data to pre-train an auto-regressive transformer
model represented by qθ, the detailed architecture of which
will be introduced in later sections. For the sake of training
of this auto-regressive model, each trajectory is broken down
into blocks of size B with sliding stride at 1. Thus, a piece
of trajectory with length T will be converted to T − B + 1
blocks. To avoid notation cluttering, here we define an ab-
breviation eht,i = (et−B , · · · , ei−1). The objective is to min-
imize the following cross entropy loss as the pre-train loss
LPT:

LPT = Es∼P̂

T∑
t=B

1

B

t∑
i=t−B+1

− log qθ(ei|eht,i, d), (3)

where P̂ represents the trajectory distribution of simulation
data, t denotes the tail position of a block.

Fine-Tuning with Real Data
In the fine-tuning stage, real data are further used to train the
transformer model. In order to keep a balance between the
pre-trained knowledge and the fine-tuned knowledge, a KL
regularizer λKL is introduced to the loss function to prevent
significant deviation from the pre-trained model. Thus, we
have the fine-tune loss LFT represented as follows:

LFT = LPT + λKLLKL , (4)

LKL = Es∼P

T∑
t=B

1

B

t∑
i=t−B+1

LKL
t,i , (5)

LKL
t,i = DKL(qθpt(·|eht,i, d)∥qθft(·|eht,i, d)), (6)

where P represents the trajectory distribution of real data,
θpt denotes the fixed pre-trained model parameter, and θft
denotes the model parameter being fine-tuned. The dot “·”
indicates a probability distribution rather than a single prob-
ability value.

Auto-Regressive Inference
The fine-tuned model is able to generate a road edge trajec-
tory in an auto-regressive manner. Given the origin o and
destination d, we set e0 = o as the first token of the se-
quence and d as a condition to the transformer-based model.
We then iteratively sample the next token from the predicted
distribution, appending it to the end of the sequence until
the predefined end token is reached or the maximum length
is exceeded.



Model Architecture
To effectively represent the trajectory, each road edge is en-
coded as a token. To mimic the short time-dependency ob-
served in real trajectories, the model is designed to consider
at most previous B steps. The model takes a block of token
sequence eht = (et−B , · · · , et−1) and the destination token
d as input and outputs the predicted next-token probability
qθ(·|eht , d).

Token

Embedding

Positional Embedding

Input
Trajectories

MultiLayer Perception

Input
Destinations

Token

Embedding Encoding Head

Transformer Layerk ×

Linear Projection

Layer Norm

Softmax

e1, e2, e3, e4, e5, e6 , e7

Concat Self-Attention

Layer Norm

Feed-Forward

Layer Norm

Trajectories

Embedding

Figure 3: Overall architecture.

The whole model takes a decoder-only Transformer archi-
tecture, as Figure 3 illustrates. The Encoding Head, Trans-
former Backbone and Decoder Head are designed as below.

Encoding Head The Encoding Head processes each token
in the sequence independently, combining the embedding in-
formation from the historical tokens and the destination to-
kens. This process can be expressed as

hd = NormEmbedding(d) ,
h = NormEmbedding(s) ,
h0 = MLP(Concat([h, hd])) + Epos ,

(7)

where hd ∈ R1×C is destination embedding, h ∈ RB×C is
historical token embedding, and C is the hidden layer size.
Here, Concat concatenates the broadcasted hd and h in the
last dimension, and Epos is the absolute positional embed-
ding. The final output of the encoding head h0 ∈ RB×C .
Specially, the normalized embedding is calculated as fol-
lows, based on empirical evidence that it stabilizes the train-
ing process.

NormEmbedding(·) ≜ LookupTable(·)
∥LookupTable(·)∥

. (8)

Transformer Backbone The Transformer backbone con-
sists of L transformer layers, each containing a self-attention
module and a feed-forward network, both wrapped with
residual connections and LayerNorm. The causal mask is ap-
plied to attention weights to prevent positions from attending
to subsequent positions. For the activation function, we use
SiLU (Ramachandran, Zoph, and Le 2017).

For k = 1, 2, · · · , L, the process can be formulated as:

hSA
k = SelfAttention(LN(hk−1)) + hk−1 ,

hk = FFN(LN(hSA
k )) + hSA

k ,
(9)

where LN denotes LayerNorm.
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Figure 4: Visualization of road networks in Jinan and Shen-
zhen. The various colors represent different road tags based
on the classification system in OpenStreetMap. The area in-
dicated by the grey background is the masked region for out-
of-distribution experiment setting.

Decoder Head After the final transformer block, we de-
code the sequence of hidden vectors into the prediction of
the next token via a standard linear decoder. The result at
each position represents the logits of the probability distri-
bution of the token at the next position.

y = Linear(LN(hL)) ,

qθ(·|eht,i, d) = Softmax(yi) ,
(10)

where i = 1, 2, · · · , B, Y ∈ RB×|E| is the final out-
put, and Y i ∈ R1×|E| is the i-th row of Y . Finally, the
probability of generating a trajectory is represented as the
joint probability of generating each token qθ(s|o, d) =∏T

t=1 p(et|emax(t−B,0), · · · , et−1, d).

Experiments
Experiment Settings
Data Description The experiment is conducted on two
real-world cities, Jinan and Shenzhen. Both the road net-
work data and the city-scale vehicle trajectory data are ob-
tained and processed from the paper (Yu et al. 2023). As
described in the paper, the trajectory data is recovered from
city-scale traffic camera video data through a trajectory re-
covery framework.
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Figure 5: Comparison of trajectories generated by the calibrated simulation and our model. Figure (a) displays a selected path
in Jinan. Figure (b) shows three trajectories traversing through this selected path. Y-axis is the first timestamp arriving on that
road edge. We can see that the trajectory generated by calibration (in blue) moves too fast, whereas our generated trajectory (in
red) presents a similar travel time as the real trajectory (in green). Figure (c) shows the statistics of all trajectories traversing
through this path. In general, the travel time of our generated trajectories on this path matches better with that of the real-world
observations compared with the calibration.

Road network data. The road network data is described by
intersections and road edges, with 8,908 intersections and
23,312 road edges in Jinan, and 11,933 intersections and
27,410 road edges in Shenzhen. The road networks in these
two cities are visualized in Figure 4.

City-scale vehicle trajectory data. The original trajectory
data contains three days of vehicle trajectories in Shenzhen
and one day of vehicle trajectories in Jinan. Each trajectory
is represented by a sequence of intersection ID in the city
road network and the corresponding timestamp. To ensure
the soundness of these trajectories, the original data under-
goes a pipeline process including filtering, mapping, and
re-sampling, to remove the impractically long and appar-
ently not consistent trajectories. For simplicity, we convert
the timestamped trajectory into an evenly spaced sequence
by setting the time interval to 5 seconds. As a result, a pro-
cessed trajectory is represented as a series of edges. The out-
put trajectory data includes 497,978 trajectories in Jinan and
774,654 trajectories in Shenzhen.

Evaluation Metrics The generated trajectories are com-
pared with the groundtruth trajectories using the following
metrics.

Destination Correctness Rate (DCR): percentage of gener-
ated trajectories that reach the intended destination.

Jensen Shannon Divergence (JSD) of Edge Distribution: the
distance between the generated and groundtruth spatial dis-
tribution of edge visits in the road network. We calculate
the frequency of each edge appearing in the generated and
groundtruth trajectories, respectively, treating these frequen-
cies as multinomial distributions, and then compute the JSD
between them.

Wasserstein Distance (WD) of Sequence Length: distance
between the sequence lengths distributions of the generated
and groundtruth trajectories, reflecting differences in the
overall travel time. It can be empirically approximated given
two sets of samples from the compared distributions (Ram-
das, Garcia, and Cuturi 2015).

Parameters and Computational Setting The experiment
is conducted on a server with eight NVIDIA A100-SXM4-
40GB GPUs. Pre-training utilizes two GPUs, while fine-
tuning is performed on one GPU. The models are trained
using the PyTorch framework (Ansel et al. 2024) with data
parallelism to distribute the computational load across the
GPUs. We use Adam as the optimizer with β1 as 0.9 and β2

as 0.999. The total training time is approximately 9 hours
for pre-training and 2 hours for fine-tuning both in Jinan and
Shenzhen data.

Table 1 shows our hyperparameters used in the experi-
ments. We limit the max generated length to 500 for Jinan
and to 1,500 for Shenzhen. The regularization parameter
λKL on fine-tune term is set as 0.01 by default, while for
the out- of-distribution experiment setting it is set as 100.

Neural Net Parameters Value
# Layers 12
# Heads 8

Hidden layer size 384
FFN expansion factor 2

Block size 16
Encoding head MLP shape [768, 384, 384]

Training Parameters Value
Batch size 1,024 (pt), 512 (ft)

Learning rate 1e-4 (pt), 1e-5 (ft)
# Iterations 3e5 (pt), 5e4 (ft)

Table 1: Default hyperparameters of our experiments, with
pt & ft represents pre-training and fine-tuning.

Overall Results
Comparison with Calibration To demonstrate that the
proposed method surpasses calibrating physcis-based simu-
lators in approximating real trajectories, we compare three
methods: ours, SUMO simulation (without calibration),
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Figure 6: Density maps of trajectory data in Jinan. The red box indicates the boundary of the masked region. The varying colors
represent different density levels. Our proposed model (top right) aligns more closely with the original data (top left) compared
to the TS-TrajGen model (bottom left) and the DiffTraj model (bottom right).

Method Jinan Shenzhen
JSD↓ WD↓ JSD↓ WD↓

Simulation 0.052 24.717 0.185 182.832
Calibration 0.042 17.564 0.104 127.929

Ours 0.023 11.076 0.020 86.033
Improvement 45.2% 36.9% 80.8% 32.7%

Table 2: Comparison with simulation methods. Simulation
refers to simulator generated trajectories without calibration.
Calibration refers to generated trajectories from calibrated
simulators. Improvement means the relative change of our
method over calibration.

SUMO simulation (with calibration), using real data as the
reference. The calibration process follows these steps. (1)
Speed limits for each road edge are set to the median of
speed distribution from trajectory data in the training set. (2)
Tabu search (Yu and Fan 2017) is used to adjust vehicle pa-
rameters (acceleration, deceleration, maxSpeed) to optimize
the Wasserstein Distance (WD).

We randomly split the real trajectory data into three sets,
approximately 90% for training, 5% for testing and 5%
for validation. In Shenzhen, 699,200 trajectories is used for
training, 37,473 for testing, 37,981 for validation. In Jinan,
448,362 trajectories is used for training, 24,800 for test-
ing, 24,816 for validation. Simulated data from 454,518 and
732,150 trajectories is used for pre-training.

Table 2 shows the results of comparison with simulation
methods. Calibration shows improvement over default sim-
ulation, which is expected because calibration uses the real
data. Our method further improves over calibration, showing

Method Jinan Shenzhen
JSD↓ WD↓ JSD↓ WD↓

DiffTraj 0.670 55.452 0.664 265.150
TS-TrajGen 0.116 56.195 0.229 258.364

Ours 0.047 38.482 0.081 216.291
Improvement 59.5% 31.5% 64.6% 16.3%

Table 3: Comparison with ML methods. Improvement is the
relative value of our method over TS-TrajGen.

the strength of using a neural network, which is capable of
using backpropagation to fit with real data. We further use a
case study in Figure 5 to intuitively illustrate why our model
is better than the calibration.

Comparison with ML Models There is no existing work
that can be directly applied in our problem setting. As dis-
cussed in the related work section, GAN-based methods
generate routes instead of timestamped trajectories, mean-
ing they do not care about the time that a vehicle stays on a
road edge. Existing diffusion-based methods require the tra-
jectory to be a sequence of numeric GPS points instead of
road edges.

We compare our model with two state-of-the-art methods,
representing GAN model TS-TrajGen (Jiang et al. 2023) and
diffusion model DiffTraj (Zhu et al. 2024a) respectively. Sig-
nificantly changes have been made for DiffTraj in order to
make it comparable. We convert road edges to correspond-
ing latitude and longitude coordinates. The generated result
on the coordinates needs to map back to the nearest edge.
This conversion may introduce errors because a slight dif-



Data Proportion
(Real:Simu)

Combine simulation data and real data Real Only
λKL = 100 λKL = 1 λKL = 0.01

DCR↑ JSD↓ WD↓ DCR↑ JSD↓ WD↓ DCR↑ JSD↓ WD↓ DCR↑ JSD↓ WD↓
1:100 0.956 0.045 40.437 0.872 0.053 40.159 0.251 0.393 13.537 0.144 0.516 42.750
3:100 0.957 0.045 40.465 0.895 0.053 39.466 0.362 0.350 23.648 0.239 0.425 59.234

10:100 0.958 0.045 40.318 0.915 0.053 38.032 0.555 0.271 16.185 0.388 0.338 40.383
30:100 0.959 0.045 40.190 0.933 0.052 36.553 0.738 0.176 5.363 0.600 0.233 26.190
50:100 0.960 0.044 40.244 0.953 0.043 34.663 0.922 0.054 9.941 0.860 0.077 15.453
70:100 0.961 0.044 40.239 0.957 0.040 34.107 0.957 0.024 11.854 0.955 0.028 14.204

100:100 0.960 0.044 40.316 0.956 0.041 33.852 0.959 0.023 11.613 0.963 0.026 14.088

Table 4: Results of models fine-tuned with different real data proportions and KL regularization weights λKL, evaluated on real
data. Regularization term λKL is on the pre-train model with higher indicating more weights on the pre-trained model.

0 100000 200000 300000 400000
Data Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

JS
D

JSD and WD vs Data Size

10

20

30

40

50

60

70

W
D

Figure 7: Ablation study on simulated data size. Perfor-
mance improves with more data, leveling off after 227k sam-
ples and significantly drops below 136k samples.

ference in GPS coordinates may move the vehicle from the
northbound side of a road to the southbound.

Data-driven ML models are known to suffer from over-
fitting problems. To test the generalization, we mask some
regions, as shown in Figure 4, and trajectories with origin or
destination points within this region are all masked to mimic
the real-world data missing scenario. Thus, approximately
20 percent of real data is masked in both Jinan and Shen-
zhen. Then, the unmasked data is used for training, and the
masked data is used for testing.

Table 3 presents the performance of our proposed model
alongside the two compared models. Notably, our model
achieves the best JSD and WD scores in both Jinan and
Shenzhen, indicating our model’s superior efficacy in gen-
erating trajectories within unknown regions compared to the
TS-TrajGen and DiffTraj. Figure 6 further illustrates the dif-
ferences on the map.

Ablation Studies
How much simulated data is necessary? Experiment is
conducted to test the model performance w.r.t. amount of
simulated data in pre-training stage. The results are in Fig-
ure 7. It is observed that the model reaches better perfor-
mance with more examples, while the growth slows when
data size exceeds a limit (roughly 227k). However, when
the dataset size is less than 136k samples (30% of the total

generated), the model’s performance significantly degrades,
underscoring the need for sufficient data to ensure effective
learning.

How to balance the weight of real data and simulated
data? We adjust the KL regularizer, denoted as λKL, and
vary the proportion of real data versus simulated data. From
the results in Table 4, we observe the following patterns:
• When the proportion of real data is small, it is advanta-

geous to set λKL to a higher value, thereby placing greater
trust in the pre-trained data. Conversely, when sufficient
real data is available, it is preferable to rely less on the
pre-trained model.

• In comparison to using only real data, incorporating the
pre-trained model consistently yields better results (as
seen in the comparison between the “real only” column
and the λKL = 0.01 column). This further confirms the
necessity of leveraging a pre-trained model.

Conclusion
In this paper, we investigate solving the road edge trajec-
tory learning problem via pre-training a model with sim-
ulation data and fine-tuning the model with real data. The
proposed method has exhibited superior performance com-
pared to simulation methods and existing data-driven trajec-
tory learning methods. Ablation studies have also shown the
benefit of adding simulation data as a pre-train step. This
indicates that this learning model can serve as a foundation
model for further trajectory learning tasks and other down-
stream tasks.
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Data Processing Details
Tools for Data Processing
• MaxCompute: A highly scalable and efficient cloud-

based data processing platform developed by Alibaba
Cloud, used for batch processing of trajectory data in the
database.

• SUMO: SUMO (Simulation of Urban MObility) is an
open-source, highly portable traffic simulation software
designed to model and analyze large-scale traffic sys-
tems. It supports a variety of simulation scenarios, in-
cluding multi-modal traffic, and provides extensive tools
for traffic network design, simulation, and analysis.

Real Data Pre-processing
We design a pipeline process to batch process the original
road network data and real trajectory data, which is obtained
from the paper (Yu et al. 2023). The output trajectory data
is then used as the input for SUMO simulation, SUMO cali-
bration, model fine-tuning and compared methods.

• Input Trajectory Format Vehicle ID, Trip ID,
Date, (Node ID, Timestamp) pairs connected
in sequence. Vehicle ID is the vehicle identifier,
Trip ID is the index of the trip of the vehicle, Date
is the date of this trip.

• Output Trajectory Format Trajectory ID,
(New Time, Edge ID) pairs connected in sequence.

• Processing Steps
1. Filter: We use MaxCompute to filter out unrealistic

trips with obvious long detour. First, the original tra-
jectory data is loaded into MaxCompute and each tra-
jectory is assigned a unique Trajectory ID. Sub-
sequently, we eliminate trajectories that exhibit dis-
crepancies exceeding a threshold compared with theo-
retical shortest path given origin and destination points
of the trajectories.

2. Decompose: Each trajectory is then decomposed to
a sequence of Node ID and Timestamp pairs and
transformed into multiple rows of (Trajectory ID,
Node ID, Timestamp) via the intrinsic EXPLODE
function.

3. Map: Every Node ID in each trajectory is mapped
to an Edge ID in the road network dataset. By fur-
ther taking into account the timestamps, the exploded
trajectory data can be converted into multiple rows
of (Trajectory ID, Edge ID, Start Time,
Time Interval), where Start Time represents
the timestamp that specific vehicle entering the spe-
cific edge, and Time Interval denotes the total
time spent on that edge.

4. Resample: The previously-processed timestamped
trajectory is resampled at a 5-second interval.
The resampled trajectory data follows rows of
(Trajectory ID, Edge ID, New Time), where
New Time represents the new timestamp with 5-
second interval.

5. Connect: The resampled trajectory data is concate-
nated according to Trajectory ID. Then, the en-
tire trajectory dataset is divided into train, validation,
and test sets in the ratio of approximate 90%, 5%, and
5%, respectively.

6. Mask: The mask process is employed to simulate real-
world data missing scenarios. A rectangular area is se-
lected and trajectories with origin or destination points
within this region are all masked. Approximately 20
percent of total real data is masked in both Jinan and
Shenzhen. Then, the unmasked data is used for train-
ing, and the masked data is used for testing.

Simulation Data Generation
• Roadnet Format Edge ID, Start Node ID,
End Node ID. The road network is represented as a
graph in adjacent list, with each row as an edge.

• Input OD Format Trajectory ID, Depart Time,
From edge, To edge

• Output Trajectory Format Trajectory ID,
(Timestamp, Edge ID, ratio of location )

• Processing Steps
1. Generate OD and routes: To mimic the real data distri-

bution as much as possible, we extract the origin (first
edge) and destination (last edge) from the processed
real data and use SUMO to generate the route for each
vehicle.

2. Simulation: The road network file and the routes
file are fed to SUMO to start the simulation. The
simulation output is formatted in the same way as
the real data, (Trajectory ID (Timestamp,
Edge ID, Ratio of Location) ...), except
the Ratio of Location, which is further saved to assist
the training.

Baseline Setting Description
• TS-TrajGen: The model is revised to enable the genera-

tion of duplicate edges, since vehicles may stay on a spe-
cific edge for multiple time steps. The hyper-parameter
configuration follows the setting of the original paper, ex-
cept that the training epoch is set to 10 in each training
stage.

• DiffTraj: We make several modifications to make it fit
the data. (1) Since the model takes GPS point sequences
as input, each road edge of the input data is mapped to
its geometric center using geometric descriptions from
the dataset (Yu et al. 2023). Linear interpolation is then
applied to align all sequences to a length of 40. (2) Dur-
ing generation, the model is conditioned on the start and
end grid indices, along with the time bucket index for
the departure time, while other input variables are sam-
pled from normal distributions, consistent with their nor-
malization in the training data. (3) After generation, the
generated point sequences are mapped back to edge se-
quences by selecting the nearest edge to each point.



(a) Original (b) Ours (c) TS-TrajGen (d) DiffTraj

Figure 8: Density maps of trajectory data in Shenzhen. The red boundary delineates the limits of the masked region, and
the varying colors denote different levels of densities. Our proposed model (b) aligns more closely with the original data (a)
compared to the TS-TrajGen model (c) and the DiffTraj model (d).

Calibration Setting Description
The goal of the calibration to adjust the parameters of the
simulation (accel, decel, maxSpeed), so that the gen-
erated trajectories is similar to the real ones. The train data
is used to search the best parameter, and the validation set is
used for choosing the parameter set.

• Input Trip Format: Trajectory ID, (New Time,
Edge ID) pairs connected in sequence.

• Processing Steps:
1. Adjust the speed limit of road network: To mimic the

situation that different edges exhibit different intensity
of traffic jam, we calculate the average speed for each
trajectory passing through each edge and take the me-
dian as the speed limit for the specific edge.

2. Generate routes: Given origin and destination (OD),
use SUMO to calculate the routes for each pair of OD.

3. Parameters search: This involves three steps. (1)
Adjust the simulation parameters, maxSpeed,
acceleration, and deceleration and gener-
ate 10 parameter sets near the original parameter. (2)
Run SUMO simulation according to the road network
and routes files and generate vehicle trajectories.
(3) Evaluate the generated trajectories against the
real trajectories in terms of JSD and WD scores. (4)
Repeat (1) (2) (3). The parameter set with best JSD
and WD results are reported.

Extended Experiment Results
Figure 8 illustrates density maps for Shenzhen, showcasing
the original masked data and the data generated by our pro-
posed model, the TS-TrajGen model and the DiffTraj model.
Similar to the density maps in Jinan, the result of our model
exhibits the highest similarity to that of the original data,
which further demonstrates the superiority of our model in
terms of adaptability to novel scenarios.


